

1. COURSE INFORMATION

SCHOOL	Technical U	Technical University of Crete			
DEPARTMENT	Mineral Resources Engineering				
COURSE LEVEL	Graduate				
COURSE ID	SEMESTER Winter / Spring				nter / Spring
COURSE TITLE	Fundamentals of Mineral Processing				
COURSE MOD	ULES				
in the case of credits being awarded in	n distinct part	s of the course	INSTRUCTIO	N	
eg. Lectures, Laboratory Exercises, etc			HOURS PER	2	CREDITS
uniformly for the whole course, inc		ekly hours of	WEEK		
teaching and the total number of crea	lits.				
		Lectures	2		
		PBL	1		
	Laboratories				
	Tutorial Exercises				
Total		3		6	
Add rows if needed. The teaching org		teaching			
methods used are described in detail	ed in detail in (4).				
COURSE TYPE	Core elective	e			
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:		mistry - mineral	ogy, Solid back	grou	nd in applied
	fluid mechanics				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA-PRO	D LMS Moodle L	JRL:		
	https://moo	https://moodle.eurecapro.tuc.gr/course/view.php?id=73			

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

After completing this course the student will be able to:

- ✓ Design and analyze open/close comminution circuits
- ✓ Define and understand the fundamental principles of mineral processing
- ✓ Calculate the mass balances for mineral processing circuits
- ✓ Analyze and apply the main mineral processing methods, e.g. magnetic and gravity separation, flotation etc., in practical separation tests for various ores
- ✓ Evaluate the performance and efficiency of mineral processing operations
- ✓ Understand the basic principles of fluid particle interactions in the dilute and dense bed limits
- ✓ Design and analyze the operation of fluidized beds for mineral processing

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking

Search, analysis and synthesis of data and information

Promoting free, creative and inductive thinking

Technology assessment (economic, environmental, social)

Decision making

Teamwork

Working in an interdisciplinary environment

Production of new research ideas

3. COURSE SYLLABUS

Lecture 1: Introduction to mineral processing, particle size & particle size distribution, sieve analysis, screen types, industrial screening, mass balances, exercises

Lecture 2-3: Particle size distribution models, size reduction, comminution machines, exercises

Lecture 4: Open / close circuit operations, mass balances, exercises

Lecture 5-6: Liberation / degree of liberation, mineral processing circuits, mass balances, metal units, recovery, exercises

Lecture 7-8: Optical & magnetic separation, gravity separation, heavy media separation, types of concentrators, exercises

Lecture 9: Froth flotation, collectors, activation and depression mechanisms, flotation cells, flotation circuits, basic principles of settling and classification, exercises.

Lecture 10: Fundamentals of flow past solids- Fluid-solid interactions

Lecture 11: Introduction to the dynamics of fluidized beds

Lecture 12: Reaction Kinetics in fluidized beds

Lecture 13: Numerical simulation of fluidized beds using COMSOL Multiphysics - Hands on practice

LECTURE METHOD Face to face, distance learning, etc.	Face to face, distant learning and PBL: the presence of students in all lectures is obligatory				
USE OF INFORMATION AND COMMUNICATION TECHNOLOGY Use of ICT in Teaching, in Laboratory Exercises, in Communication with students	Microsoft Excel and Microsoft Powerpoint will be used during classes and project implementation.				
TEACHING ORGANISATION Describe in detail the way and methods of	ΑCTIVITY	Workload per semester (in Hours)			
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	26			
Exercise, Literature review & analysis, Tutoring,	Tutorials				
Practice (Placement), Clinical Exercise, Artistic	Lab assignments				
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Projects	26			
	Autonomous study	98			

The student's study hours for each learning activity and the hours of non-guided study according to the ECTS principles are mentioned.	Course Total (25 hours' workload/ECTS credit)	150
ASSESSMENT METHODS Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.	2 Projects per student (involvi 20' presentation with a ppt file A research article in a relevant each student. A ~3 page summ be prepared, involving critical	e, Q&A: 60% t topic will be prepared by nary and ppt presentation will

5. DIGITIZATION (use of tools & software)

Students are required to perform calculations in Microsoft Excel spreadsheets (mass balance, economic and energy indicators etc) using the relevant tools and also prepare ppt presentations. The use of COMSOL Multiphysics will be demonstrated for the modeling of flow and reaction kinetics in fluidized beds.

6. RECOMMENDED INTERNATIONAL LITERATURE

- Wills, B.A.; Finch, J.A. 2016. Wills Mineral Processing Technology: An Introduction to the Practical Aspects of Ore Treatment and Mineral Recovery, Butterworth-Heinemann Publishers, Oxford, UK.
- Fuerstenau, M.C.; Han, K.N. 2003. Principles of Mineral Processing, Society for Mining, Metallurgy, and Exploration, USA.
- Allen, T. 2003. Powder Sampling and Particle Size Determination; Elsevier: Amsterdam, The Netherlands.
- Petrakis, E.; Stamboliadis, E.; Komnitsas, K. 2017. Identification of optimal mill operating parameters during grinding of quartz with the use of population balance modeling. KONA Powder and Particle Journal 34, 213-223.
- Petrakis, E.; Komnitsas, K. 2019. Effect of energy input in a ball mill on dimensional properties of grinding products. Mining, Metallurgy & Exploration, 36 (4), 803-816.
- Petrakis E., Karmali V., Komnitsas K. 2021. Factors affecting nickel upgrade during selective grinding of low-grade limonitic laterites. Mineral Processing and Extractive Metallurgy, 130 (3), 192-201
- Petrakis, E.; Komnitsas, K. 2021. Development of a non-linear framework for the prediction of the particle size distribution of the grinding products. Mining, Metallurgy & Exploration, 38 (2), 1253-1266.
- Transport Phenomena, Revised 2nd Edition, R. Byron Bird, Warren E. Stewart, Edwin N. Lightfoot, WILEY
- Fluidized-Bed Reactors: Processes and Operating Conditions, John G. Yates and Paola Lettier, SPRINGER

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

	-				
SCHOOL	Mineral Res	Mineral Resources Engineering			
DEPARTMENT	Mineral Resources Engineering				
COURSE LEVEL	Graduate				
COURSE ID		SEMESTER Spring			ing
COURSE TITLE	Data Science for Exploration and Exploitation				
COURSE MOD	ULES				
in the case of credits being awarded i	n distinct part	s of the course	INSTRUCTIO	N	
eg. Lectures, Laboratory Exercises, etc	. If credit unit	s are awarded	HOURS PEF	2	CREDITS
uniformly for the whole course, inc	licate the we	ekly hours of	WEEK		
teaching and the total number of crea	lits.				
		Lectures	3		10
Tutorial Exercises/Laboratories		s/Laboratories	2		
		Total			
Add rows if needed. The teaching org	anization and	teaching			
methods used are described in detail	in (4).				
COURSE TYPE	General bac	kground			
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:					
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO					
ERASMUS STUDENTS:					
COURSE URL:	EURECA PRO) LMS Moodle U	JRL:		
	https://moodle.eurecapro.tuc.gr/course/view.php?id=74				

2. LEARNING OUTCOMES

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

After completing this course the student will be able to perform:

- Data input/output commands
- Use data variables
- Arithmetic operations, iterations, control structures, vectors and matrices, use of data files, subroutines and functions

Subjectives and functions General Competencies/Skills Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances? Search, analysis and synthesis of data and information, using the necessary technologies Project design and management Adaptation to new situations Respect for diversity and multiculturalism Decision making Demonstration of social, professional and moral responsibility and sensitivity to gender issues Teamwork Exercise criticism and self-criticism

Working in an international environment Promoting free, creative and inductive thinking Working in an interdisciplinary environment Production of new research ideas Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision makina Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking

3. COURSE SYLLABUS

Content

Week 1. Introduction to image analysis

Week 2. Image enhancement

Week 3-4. Image analysis

Week 5. Convolutional Neural Networks

Week 6. Introduction to geophysical methods

Week 7. Gravity and magnetic methods

Week 8. Electrical and electromagnetic methods

Week 9. Data acquisition, enhancement and interpretation

Week 10-11. Spatial/spatiotemporal geostatistical analysis principles

Week 12. Conditional Simulation methods

Week 13. Uncertainty propagation

LECTURE METHOD	Face to Face/distance learning
Face to face, distance learning, etc.	
USE OF INFORMATION AND	In Teaching:
COMMUNICATION TECHNOLOGY	- PC
Use of ICT in Teaching, in Laboratory Exercises,	- eclass
in Communication with students	- web Apps
	In Laboratory/Tutorials Education:
	- PC
	- eclass

European University on Responsible Consumption and Production

	 moodle In Communication with Students: PC eclass 				
TEACHING ORGANISATION Describe in detail the way and methods of	ΑCTIVITY	Workload per semester (in Hours)			
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	39			
Exercise, Literature review & analysis, Tutoring,	Tutorials/labs	26			
Practice (Placement), Clinical Exercise, Artistic Lab, Interactive teaching, Educational visits,	Tutorials/lab assignments	30			
Project work, project, etc.	Projects	60			
	Autonomous study	50			
The student's study hours for each learning	Literature Review	45			
activity and the hours of non-guided study according to the ECTS principles are mentioned.		250			
	Course Total				
	(25 hours' workload/ECTS	250			
ASSESSMENT METHODS	credit)				
Description of the evaluation process	Written Final Examination	40%			
	(Multiple Choice Questions				
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test,	(Comparative evaluation of				
Short Answer Questions, Essay Development	(Short answer questions)				
Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public	(Problem solving questions)				
Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation,	Individual Project 3	0%			
Other	(Public Presentation)				
Well defined student assessment criteria are mentioned. Mention whether and how the	(Oral Exam) (Project Score)				
students can access them.	Tutorial/lab projects 3 (Project Score)	0%			

5. DIGITIZATION (use of tools & software)

- Matlab software
- Open source machine learning software
- R-studio (CRAN)
- E-Z Variogram analysis

6. RECOMMENDED INTERNATIONAL LITERATURE

- Digital Image Processing by Rafael Gonzalez, Richard Woods
- Geophysics for the Mineral Exploration Geoscientist by Michael Dentith, S.T. Mudge
- Varouchakis, Emmanouil A. "Geostatistics: mathematical and statistical basis.". Elsevier, 2019. 1-38.
- Varouchakis, E.A., 2019. 2 Background of Spatiotemporal Geostatistical Analysis: In: Corzo, G., Varouchakis, E.A. (Eds.), Spatiotemporal Analysis of Extreme Hydrological Events. Elsevier, pp. 39-57.

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	Mineral Res	ources Engineer	ing		
DEPARTMENT	Mineral Resources Engineering				
COURSE LEVEL	Post-Graduate				
COURSE ID	ST021 SEMESTER Spring				ing
COURSE TITLE	Instrumental Analysis for Raw Materials				
COURSE MOD in the case of credits being award course eg. Lectures, Laboratory Exerc awarded uniformly for the whole c hours of teaching and the total numb	arded in distinct parts of the INSTRUCTION exercises, etc. If credit units are HOURS PER e course, indicate the weekly WEEK			CREDITS	
		Lectures	3		
Laboratories			0		
Tutorial Exercises		0			
Total		3		10	
Add rows if needed. The teaching org		teaching			
methods used are described in detail	. ,				
COURSE TYPE	General bac	kground			
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:	-				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA-PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=75				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

After completing this course the student will be able to:

- Compare (Evaluate) various analytical methods.
- Recognize the advantages and disadvantages of various analytical techniques.
- Explain the difficulties arising during instrumental chemical analysis.
- Select to choose the most appropriate technique, depending on the problem he has to solve.
- Interpret the basic mode of operation of specific analytical techniques

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information, using the necessary technologies. Adaptation to new situations Decision making Autonomous work Production of new research ideas All of the above Exercise criticism and self-criticism Promoting free, creative and inductive thinking

3. COURSE SYLLABUS

- 1) Interaction of radiation with matter, spectral line broadening
- 2) X-Ray Analysis and modern applications
- 3) Analytical applications of synchrotron radiation
- 4) Gamma ray spectrometry,
- 5) Activation analysis,
- 6) Mössbauer spectroscopy,
- 7) Microbeam and surface analysis
- 8) Environmental radioactivity, the table of isotopes, The radon problem,
- 9) Membranes in analytical chemistry, Speciation analysis,
- 10-12) Special applications of selected analytical methods

13) Presentations

4. TEACHING and LEARNING METHODS – ASSESSMENT

LECTURE METHOD	Face to face	
Face to face, distance learning, etc.		
USE OF INFORMATION AND	Viewing slides using a PC	
COMMUNICATION TECHNOLOGY		
Use of ICT in Teaching, in Laboratory Exercises,		
in Communication with students		
TEACHING ORGANISATION		Workload per semester (in
	ΑCTIVITY	Hours)
Describe in detail the way and methods of		
teaching.	Lectures	39
Lectures, Seminars, Laboratory Exercise, Field	Tutorials	33
Exercise, Literature review & analysis, Tutoring,		
Practice (Placement), Clinical Exercise, Artistic Lab, Interactive teaching, Educational visits,	Lab assignments	
Project work, project, etc.	Projects	71
	Autonomous study	140
The student's study hours for each learning		
activity and the hours of non-guided study		
according to the ECTS principles are mentioned.	Course Total	
	(25 hours' workload/ECTS	250
	credit)	250
ASSESSMENT METHODS		h, Assessment Method: Public
Description of the evaluation process	Presentation and Multiple Cho	,
Assessment Language, Assessment Methods,		
Formative or Concluding, Multiple Choice Test,		
Short Answer Questions, Essay Development		
Questions, Problem Solving, Written		
Assignment, Essay / Report, Oral Exam, Public		
Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation,		
Other		
Well defined student assessment criteria are		
mentioned. Mention whether and how the		
students can access them.		

5. DIGITIZATION (use of tools & software)

RECOMMENDED INTERNATIONAL LITERATURE 6.

Books:

- Analytical Chemistry by Robert Kellner (Editor), Matthias Otto (Editor), H. Michael Widmer • (Editor), Jean-Michel Mermet (Editor) Wiley-VCH
- Measurement Statistic and Computation (John Wiley and Sons)
- Handbook of Practical X-Ray Fluorescence Analysis (Springer) •
- Handbook of X-Ray Spectrometry (Marcel Dekker, Inc.) •
- Radiation Protection of the Public and the Environment, International Atomic Energy Agency, • Vienna 2018

Journals:

- Chemical Review (American Chemical Society) •
- Analytical Chemistry (American Chemical Society) Special issues •
- Analyst (The Royal Society of Chemistry) Tutorial reviews •
- X-Ray Spectrometry (Wiley)

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	Technical Ur	Technical University of Crete			
DEPARTMENT	Mineral Resources Engineering				
COURSE LEVEL	Graduate				
COURSE ID			SEMESTER	Spri	ng
COURSE TITLE	Modern Technologies for the Near-Zero Waste Processing of Low-Grade Primary Ores and Secondary Raw Materials				
COURSE MOD	ULES				
in the case of credits being award		· ·	INSTRUCTIO	N	
course eg. Lectures, Laboratory Exer	-		HOURS PER	२	CREDITS
awarded uniformly for the whole of	-	te the weekly	WEEK		
hours of teaching and the total numb	er of credits.	L a atuma a			
		Lectures	3		
	T 4	Laboratories			
	Tut	orial Exercises	3		<u> </u>
Add rows if needed. The teaching are	Total				6
methods used are described in detail	vs if needed. The teaching organization and teaching				
COURSE TYPE	Core elective	2			
Background, General Knowledge,	core elective	-			
Scientific Area, Skills Development					
PREREQUISITES:	Knowledge	of Inorganic Che	mistry. Minera	logv.	Ore
	-	Extractive metal			
	aspects				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=76				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Learning Outcomes Writing Guide

After completing this course, the student will be able to:

- ✓ Carry out literature review, assess the State of the Art (SoA) in this field and identify innovative technologies
- ✓ Perform basic analyses for each ore / waste type and decide which are the most appropriate treatment technologies
- ✓ Design relevant flowsheets for treatment technologies and carry out mass balance calculations
- ✓ Define the most appropriate ranges of the operating parameters
- ✓ Carry out basic tecno-economic analysis
- ✓ Assess the potential toxicity of the wastes (solids and liquids) and select appropriate waste

management technologies

- ✓ Identify options for the valorization of wastes
- ✓ Do project work, also using PBL, as member of a team
- ✓ Respect the natural environment and contribute towards reaching the respective sustainable development goals (SDGs)

General Competencies/Skills

Production of new research ideas

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking

Search, analysis and synthesis of data and information

Assessment of the State of the Art (SoA)

Technology assessment (economic, environmental, social)

Assessment of the progress beyond the SoA

Decision making

Teamwork

Working in an interdisciplinary environment

Production of new research ideas

Identify relevant SGDs and Technology Readiness Levels (TRLs)

3. COURSE SYLLABUS

Content

Lecture 1: Evolution of metal production and waste recycling towards a zero-waste approach

Lecture 2: Considerations on ore grades and available low-grade materials - technical aspects

Lectures 3-4: Mineral processing (fundamentals, including case studies)

Lectures 5-7: Metal extraction (SoA, innovation in pyrometallurgical processes, atmospheric and heap leaching, bioleaching, other extraction processes)

Lectures 8: Metal recovery (fundamentals, innovations)

Lecture 9-10: Residue valorization (as construction materials, cements and binders (supplementary cementitious materials, alkali-activated materials))

Lecture 11: Economic sustainability, environmental and safety impact

Lectures 12-13: Social aspects in mining / metallurgical projects

LECTURE METHOD	Face to face, distant learning and PBL: the presence of
Face to face, distance learning, etc.	students in all lectures is obligatory
USE OF INFORMATION AND	Microsoft Excel and Microsoft Powerpoint will be used
COMMUNICATION TECHNOLOGY	during classes and project implementation.
Use of ICT in Teaching, in Laboratory Exercises,	
in Communication with students	

TEACHING ORGANISATION Describe in detail the way and methods of	ΑCTIVITY	Workload per semester (in Hours)		
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	26		
Exercise, Literature review & analysis, Tutoring,	Tutorials			
Practice (Placement), Clinical Exercise, Artistic	Lab assignments			
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Projects	26		
	Autonomous study	98		
The student's study hours for each learning activity and the hours of non-guided study according to the FCTS principles are maptioned.				
according to the ECTS principles are mentioned.	Course Total			
	(25 hours' workload/ECTS	150		
	credit)			
ASSESSMENT METHODS				
Description of the evaluation process		lving teamwork) through PBL.		
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test,	20' presentation with a ppt fil	e, Q&A: 60%		
Short Answer Questions, Essay Development	A research article in a relev	ant topic will be prepared by		
Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical	each student. A ~3 page summary and ppt presentation wil			
Examination of Patients, Artistic Interpretation, Other				
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them				
students can access them.				

5. DIGITIZATION (use of tools & software)

Students are required to do calculations in Microsoft Excel spreadsheets (mass balance, economic and energy indicators etc) using the relevant tools and also prepare ppt presentations.

6. RECOMMENDED INTERNATIONAL LITERATURE

Ore / Waste Treatment

- 1. Komnitsas, K., Petrakis, E., O. Pantelaki, A. Kritikaki (2018). Column leaching of Greek low-grade limonitic laterites, Minerals, *Minerals*, 8(9):377; <u>https://doi.org/10.3390/min8090377</u>
- 2. Mystrioti, C., Papassiopi, N., Xenidis, A., Komnitsas, K. (2018). Counter-current leaching of lowgrade laterites with the use of hydrochloric acid and proposed purification options of pregnant solution, *Minerals*, 8:599; <u>https://doi.org/10.3390/min8120599</u>
- Komnitsas, K., Petrakis, E., Bartzas, G., Karmali, V. (2019). Column leaching of low-grade saprolitic laterites and valorization of leaching residues, *Science of the Total Environment*, 665:347-357 <u>https://doi.org/10.1016/j.scitotenv.2019.01.381</u>
- Spooren, J., Breemersch, K., Dams, Y., Mäkinen, J., Lopez, M., González-Moya, M., Tripiana, M., Pontikes, Y., Kurylak, W., Pietek, G., Komnitsas, K., Binnemans, K., Varia, J., Horckmans, L., Yurramendi, L., Snellings, R., Peys, A., Onisei, S., Björkmalm, J., Willquist, K., Kinnunen, P. (2020). Near-zero-waste processing of low-grade, complex primary and secondary ores: challenges and opportunities, *Resources, Conservation and Recycling*, 160:104919, <u>https://doi.org/10.1016/j.resconrec.2020.104919</u>
- 5. Komnitsas, K., Bartzas, G., Petrakis, E. (2023). A novel and greener sequential column leaching approach for the treatment of two different Greek laterites, *Science of the Total Environment*,

854, 158748, http://dx.doi.org/10.1016/j.scitotenv.2022.158748

Waste Valorization

- 6. Komnitsas, K., D. Zaharaki, V. Perdikatsis (2007). Geopolymerisation of low calcium ferronickel slags, *Journal of Materials Science*, 42(9), 3073-3082, <u>http://dx.doi.org/ 10.1007/s10853-006-0529-2</u>
- 7. Komnitsas, K., Zaharaki, D., V. Perdikatsis, (2009). Effect of synthesis parameters on the compressive strength of low-calcium ferronickel slag inorganic polymers, *Journal of Hazardous Materials*, 161:760-768, <u>http://dx.doi.org/10.1016/j.jhazmat.2008.04.055</u>
- 8. Zaharaki, D., K. Komnitsas, V. Perdikatsis (2010). Use of analytical techniques for identification of inorganic polymer gel composition, *Journal of Materials Science*, 45(10):2715-2724, <u>http://dx.doi.org/10.1007/s10853-010-4257-2</u>
- 9. Komnitsas, K. (2011). Potential of geopolymer technology towards green buildings and sustainable cities, *Procedia Engineering*, 21: 1023-1032, <u>http://dx.doi.org/10.1016/j.proeng.2011.11.2108</u>
- 10. Komnitsas, K., Zaharaki, D., Vlachou, A., Bartzas, G., Galetakis, M. (2015). Effect of synthesis parameters on the quality of construction and demolition wastes (CDW) geopolymers, *Advanced Powder Technology* 26(2):368-76, <u>http://dx.doi.org/10.1016/j.apt.2014.11.012</u>
- 11. Komnitsas, K., Bartzas, G., Karmali, V., Petrakis, E., Kurylak, W., Pietek, G., Kanasiewicz, J. (2019). Assessment of alkali activation potential of a Polish ferronickel slag, *Sustainability*, 11:1863, <u>https://doi.org/10.3390/su11071863</u>
- 12. Petrakis, E., Karmali, V., Bartzas, G., Komnitsas, K. (2019). Grinding kinetics of slag and effect of final particle size on the compressive strength of alkali activated materials, *Minerals*, 9:714, doi:10.3390/min9110714
- 13. Komnitsas K., Bartzas, G., Karmali, V., Petrakis, E. (2021). Factors Affecting Alkali Activation of Laterite Acid Leaching Residues, *Environments*, 8, 4, <u>https://doi.org/10.3390/environments8010004</u>
- 14. Karmali, V., Petrakis, E., Bartzas, G., Komnitsas, K. (2022). Valorization Potential of Polish Laterite Leaching Residues through Alkali Activation. *Minerals*, 12(11), 1466, <u>https://doi.org/10.3390/min12111466</u>

Environmental topics

- Xenidis, A., N. Papassiopi, K. Komnitsas (2003). Carbonate rich mine tailings in Lavrion: Risk assessment and proposed rehabilitation schemes, *Advances in Environmental Research*, 7(2), 207-222, <u>http://dx.doi.org/10.1016/S1093-0191(02)00017-5</u>
- 16. Triantafyllidis S., Skarpelis N., **Komnitsas K.** (2007). Environmental characterisation of the Kirki (NE Greece) flotation tailings, *Environmental Forensics*, 8(4), 351-359, <u>http://dx.doi.org/10.1080/15275920701729688</u>
- 17. Komnitsas, K., K. Manousaki, D. Zaharaki (2009). Assessment of reactivity of sulphidic tailings and river sludges, *Geochemistry: Exploration, Environment, Analysis*, 9(4):313-318, <u>http://dx.doi.org/10.1144/1467-7873/09-198</u>
- 18. Komnitsas, K., Pyliotis, I., Zaharaki, D., Manoutsoglou, E. (2015). Using various guidelines and approaches for the assessment of marine sediment quality, *Environmental Forensics*, 16:109-116, <u>http://dx.doi.org/10.1080/15275922.2014.991006</u>

- Bartzas, G., Komnitsas, K. (2015). Life cycle assessment of FeNi production in Greece: A case study, *Resources Conservation and Recycling*, 105:113-122, http://dx.doi.org/10.1016/j.resconrec.2015.10.016
- Komnitsas, K., Zaharaki, D., Bartzas, G., Kaliakatsou, G., Kritikaki, A. (2016). Efficiency of pecan shells and sawdust biochar on Pb and Cu adsorption, *Desalination and Water Treatment*, 57(7): 3237-46, <u>http://dx.doi.org/10.1080/19443994.2014.981227</u>
- 21. Kritikaki, A., Zaharaki, A., **Komnitsas, K**. (2016). Valorization of industrial wastes for the production of glass ceramics, *Waste and Biomass Valorization*, 7(4):885-898, <u>http://dx.doi.org/10.1007/s12649-016-9480-x</u>
- 22. Bartzas, G., **Komnitsas, K.** (2017). Life cycle analysis of pistachio production in Greece, *Science* of the Total Environment, 595:13-24, <u>http://dx.doi.org/10.1016/j.scitotenv.2017.03.251</u>
- Ekman Nilsson, A., Macias Aragones, M., Royo, F., Dunon, V., Oorts, K., Angel, H., Komnitsas, K., Willquist, K. (2017). A Review of the Carbon footprint of Cu and Zn production from primary and secondary sources, *Minerals*, 7:168, <u>https://doi.org/10.3390/min7090168</u>
- 24. Komnitsas, K., Zaharaki, D., Bartzas, G., Alevizos, G. (2017). Adsorption of scandium and neodymium on biochar derived after low-temperature pyrolysis of sawdust, *Minerals*, 7:200, <u>https://doi.org/10.3390/min7100200</u>
- Komnitsas, K., Yurramendi, L., Bartzas, G., Karmali, V., Petrakis, E. (2020). Factors affecting covalorization of fayalitic and ferronickel slags for the production of alkali activated materials, *Science of the Total Environment*, 721:137753, <u>https://doi.org/10.1016/j.scitotenv.2020.137753</u>

Social Aspects

26. Komnitsas, K. (2020). Social License to Operate in Mining. Present views and future trends, *Resources* 2020, 9:79, <u>doi:10.3390/resources9060079</u>

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	Chemical an	Chemical and Environmental Engineering			
DEPARTMENT					
COURSE LEVEL	Master				
COURSE ID	SEMESTER Spring			ng	
COURSE TITLE	Circular Economy				
COURSE MOD	ULES				
in the case of credits being awarded in	n distinct part	s of the course	INSTRUCTIO	N	
eg. Lectures, Laboratory Exercises, etc	. If credit unit	s are awarded	HOURS PEF	2	CREDITS
uniformly for the whole course, inc	licate the we	ekly hours of	WEEK		
teaching and the total number of crea	lits.				
		Lectures	3		
Laboratories		Laboratories	0		
	Tut	orial Exercises	0		
Total		39			
Add rows if needed. The teaching org	anization and	teaching			
methods used are described in detail	in (4).				
COURSE TYPE	Background	and general kno	wledge, Devel	opme	ent of new
Background, General Knowledge,	skills, Mana	gement / Techno	ology		
Scientific Area, Skills Development					
PREREQUISITES:	none				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA-PRO	D LMS URL:			
	https://moodle.eurecapro.tuc.gr/course/view.php?id=77				
			`		

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

The course aims to present and analyze the basic principles and concept of Circular Economy. As a relatively new paradigm of economic development, Circular Economy is rapidly growing. The course will show how Circular Economy can be applied in practice, in which disciplines and areas, and the opportunities that provide for multi- and interdisciplinary collaboration. The course also aims at supporting the participant to carry out or reflect upon her/his research and study with a transdisciplinary approach. Emphasis is put on:

- The environmental problems and issues that led to the need for paradigm shift
- The relation and interconnection between sustainability and circularity
- The basic principles and approach of circular economy
- The adoption of circularity in the business sector and the industry
- The change in mindset and way of thinking

The benefits of circular economy for the users, the economy, the society and the businesses

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking

Successfully evaluate issues and challenges related with:

- Understand the concept of circular economy and its differences and connection to sustainable development
- Adopt circular practices and changes across different sectors and fields

3. COURSE SYLLABUS

Week 1: Introduction to the Circular Economy – Class Overview

Week 2: Sustainable growth and Circular Economy

Week 3: Circular Economy Principles

Week 4: Waste and Systems-Level Thinking

Week 5: Enterprise Environmental Performance - Environmental Management Systems (Part I)

Week 6: Green Entrepreneurship & Financing

Week 7: Environmental Management & Policy

Week 8: Enterprise Environmental Performance - Environmental Management Systems (Part II)

Week 9: Enterprise Environmental Performance & Environmental Practices

Week 10: Material and Product Design

Week 11: Environmental Quality Assurance Techniques

Week 12: Circular Economy at the Urban and Regional Level - Case Studies

Week 13: Project presentations by students

LECTURE METHOD	Virtual	
Face to face, distance learning, etc.		
USE OF INFORMATION AND	Powerpoint presentations, videos ar	nd e-class support
COMMUNICATION TECHNOLOGY		
Use of ICT in Teaching, in Laboratory Exercises,		
in Communication with students		
TEACHING ORGANISATION		Workload per
Describe in detail the way and methods of	ΑCTIVITY	semester (in Hours)
teaching.		
Lectures, Seminars, Laboratory Exercise, Field	Lectures	39
Exercise, Literature review & analysis, Tutoring,	Tutorials	
Practice (Placement), Clinical Exercise, Artistic	Lab assignments	
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Projects	100
Project work, project, etc.	Autonomous study	120
The student's study hours for each learning		
activity and the hours of non-guided study		
according to the ECTS principles are mentioned.	Course Total	250
	(25 hours workload/ECTS credit)	259

ASSESSMENT METHODS	
Description of the evaluation process	Project (100%)
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other	
Well defined student assessment criteria are	
mentioned. Mention whether and how the students can access them.	

DIGITIZATION (use of tools & software) 5.

RECOMMENDED INTERNATIONAL LITERATURE 6.

• Ellen MacArthur Foundation, "Towards the Circular Economy: Economic and Business Rationale for an Accelerated Transition," 2013. Executive Summary. • Stefanakis, A.I. and Nikolaou, I., 2021. Circular Economy and Sustainability - Management and Policy, Volumes I & II. Elsevier Publishing, Amsterdam, The Netherlands, September. • A. Wijkman and K. Skanberg, "The Circular Economy and Benefits for Society," Sections 2 and 4, 2015 • Ellen MacArthur Foundation, "Completing the picture – How the Circular Economy tackles climate change", September 2019. • Lieder, M., & Rashid, A. (2016). Towards circular economy implementation: a

comprehensive review in context of manufacturing industry. Journal of Cleaner Production, 115, 36-51. https://doi.org/10.1016/j.jclepro.2015.12.042

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contract number: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	Chemical and Environmental Engineering				
DEPARTMENT	Chemical and Environmental Engineering				
COURSE LEVEL	Postgraduate				
COURSE ID	B-214		SEMESTER	Spri	ng
COURSE TITLE	Air pollution – Fundamentals and Practice				
in the case of credits being award course eg. Lectures, Laboratory Exerc	boratory Exercises, etc. If credit units are the whole course, indicate the weekly HOURS PER (ECTS)			CREDITS (ECTS)	
	Lectures				9
Laboratories					
Tutorial Exercises					
Total			3		9
Add rows if needed. The teaching organization and teaching					
methods used are described in detail in (4).					
COURSE TYPE	Background	, General Knowl	edge, also delv	ing in	to specific
Background, General Knowledge,	topics related to air pollution modeling and policy aspects.			cy aspects.	
Scientific Area, Skills Development					
PREREQUISITES:	None				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=78				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

After completing this course the student will be able to:

- Understand the problem of air pollution on different spatial and temporal scales.
- Know the sources of different types of air pollutants around the world.
- Be able to construct basic equations that predict the concentrations of air pollutants in the atmosphere.
- Understand the linkages between air pollution and climate change.
- Be familiar with measurement techniques used for monitoring air pollution.
- Have basic knowledge of how models predicting atmospheric pollution work.
- Have a grasp of policies that can improve air quality levels while also benefiting our climate.

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking

3. COURSE SYLLABUS

All of the above

- 1. Overview of the air pollution problem history and current state
- 2. Gaseous pollutants
- 3. Aerosol pollutants
- 4. Air pollutants and climate change
- 5. Modelling air pollution and air quality
- 6. Problem class
- 7. Measuring air pollution and air quality
- 8. Health and ecosystem effects of air pollution
- 9. Effects of weather phenomena on air pollutants
- 10. Air quality control policies and regulations
- 11. Indoor air quality / Project overview
- 12. Modelling dispersion of pollutants / Project progress
- 13. Project presentations

LECTURE METHOD	Hybrid			
Face to face, distance learning, etc.				
USE OF INFORMATION AND	Use of Eclass for course organization, Zoom for delivery to			
COMMUNICATION TECHNOLOGY	remote attendants, and Mood	lle for course examination.		
Use of ICT in Teaching, in Laboratory Exercises,		,		
in Communication with students				
TEACHING ORGANISATION	ΑCTIVITY	Workload per semester (in Hours)		
Describe in detail the way and methods of	ACIVIT	nouisj		
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	40		
Exercise, Literature review & analysis, Tutoring,	Tutorials			
Practice (Placement), Clinical Exercise, Artistic	Lab assignments			
Lab, Interactive teaching, Educational visits,	Projects	50		
Project work, project, etc.	Autonomous study	135		
The student's study hours for each learning				
activity and the hours of non-guided study				
according to the ECTS principles are mentioned.	Course Total			
	(25 hours' workload/ECTS			
	credit)	9 ECTS overall		
	er curty	5 2010 00010		
ASSESSMENT METHODS	The language of assessment is English.			
Description of the evaluation process	-			
Assessment Language, Assessment Methods,	Assessment constitutes of two parts:			
Formative or Concluding, Multiple Choice Test,	1) Project			

Short Answer Questions, Essay Development Questions, Problem Solving, Written	2) Final examination
Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other	The two aspects of assessment count equally (50% + 50%) towards the final grade that the student will be awarded in the module.
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.	The final exam constitutes of a quantitative problem that needs to be solved which relates to air pollutants in the atmosphere, along with multiple choice questions that test the understanding of key aspects of the module.
	The project will be on a topic that will be mutually decided by the professor and the students, and will involve presenting a real-world problem related to air pollution, potentially also with aspects of how the problem can be solved.

5. DIGITIZATION (use of tools & software)

- Eclass
- Moodle
- Zoom

6. RECOMMENDED INTERNATIONAL LITERATURE

- Mark Z. Jacobson (2012), "Air Pollution and Global Warming: History, Science, and Solutions", Cambridge University Press
- Lazaridis, M. (2010), "First Principles of Meteorology and Air Pollution", Springer

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	School of Ch	School of Chemical and Environmental Engineering			
DEPARTMENT					
COURSE LEVEL	Postgraduate				
COURSE ID	A104		SEMESTER	Sprin	Ig
COURSE TITLE	Advanced Oxidation Processes for Water and Wastewater Treatment			stewater	
COURSE MOD	ULES				
in the case of credits being award	ed in distinct	t parts of the	INSTRUCTIO	N	
course eg. Lectures, Laboratory Exerc	cises, etc. If c	redit units are	HOURS PER	2	CREDITS
awarded uniformly for the whole c	ourse, indica	te the weekly	WEEK		
hours of teaching and the total number	per of credits.				
	Lectures				
Laboratories					
	Tutorial Exercises				
Total			3		9
Add rows if needed. The teaching orgo	anization and	teaching			
methods used are described in detail i	in (4).				
COURSE TYPE General Background					
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:	-				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=79				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

After completing this course the student will be able to:

- Analyze experimental results published in the literature regarding the application of advanced oxidation processes for water and wastewater treatment
- Choose the most efficient method(s) for water and wastewater treatment
- Collect data published in the scientific literature concerning water pollution and advanced oxidation processes for water and wastewater treatment
- Compare the efficiency of the various advanced oxidation processes for the degradation of organic pollutants in aqueous matrices
- Comprehend the fundamental target of advanced oxidation processes for water and wastewater treatment
- Describe the general methods used for water and wastewater treatment
- Evaluate the various advanced oxidation processes in terms of their reactivity towards the

degradation of organic pollutants in the aqueous phase Explain the basic mechanism of the various advanced oxidation processes • • Propose appropriate advanced oxidation processes for the degradation of various classes of organic pollutants • Recognize the main advantages and disadvantages of the advanced oxidation processes Relate the structure of various organic pollutants with their reactivity towards advanced • oxidation processes Review the basic principles of advanced oxidation processes Select the most efficient advanced oxidation processes in terms of their energy consumption and • cost Use the knowledge gained in the course regarding advanced oxidation processes for large scale • applications Design a treatment train for water and wastewater **General Competencies/Skills** Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances? Search, analysis and synthesis of data and information, Project design and management Respect for diversity and multiculturalism using the necessary technologies Adaptation to new situations Respect for the natural environment Decision makina Demonstration of social, professional and moral responsibility and Autonomous work sensitivity to gender issues Teamwork Exercise criticism and self-criticism Working in an international environment Promoting free, creative and inductive thinking Working in an interdisciplinary environment Production of new research ideas Search, analysis and synthesis of data and information, using the necessary technologies • • Adaptation to new situations • **Decision-making** Autonomous work Teamwork • Working in an international environment • Working in an interdisciplinary environment • Respect for the natural environment Promoting free, creative and inductive thinking • • Written communication • Oral communication Alternative/Innovative Thinking • • **Problem Solving** 3. COURSE SYLLABUS 1. Water pollution 2. Water and wastewater treatment 3. Overview of Advanced Oxidation Processes (AOPs) 4. Redox reactions and electrochemical processes

- 5. UV photolysis, Part I
- UV photolysis, Part II
 UV photolysis, Part II
- 7. UV/H_2O_2 processes
- 8. Ozone in water and wastewater treatment, Part I
- 9. Ozone in water and wastewater treatment, Part II
- 10. Ozone in water and wastewater treatment, Part III
- 11. Fenton-based processes, Part I
- 12. Fenton-based processes, Part II
- 13. Fenton-based processes, Part III

4. TEACHING and LEARNING MET	HODS – ASSESSMENT			
LECTURE METHOD	Direct (face to face) and distance learning			
Face to face, distance learning, etc.				
USE OF INFORMATION AND	Power point presentations			
COMMUNICATION TECHNOLOGY	 E-class support 			
Use of ICT in Teaching, in Laboratory Exercises,				
in Communication with students				
TEACHING ORGANISATION		Workload per semester (in		
Describe in detail the way and methods of	ΑCTIVITY	Hours)		
Describe in detail the way and methods of teaching.				
Lectures, Seminars, Laboratory Exercise, Field	Lectures	39		
Exercise, Literature review & analysis, Tutoring,	Tutorials			
Practice (Placement), Clinical Exercise, Artistic	Lab assignments			
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Projects	100		
	Autonomous study	86		
The student's study hours for each learning				
activity and the hours of non-guided study according to the ECTS principles are mentioned.				
according to the ECTS principles are mentioned.	Course Total			
	(25 hours' workload/ECTS	225		
	credit)			
ASSESSMENT METHODS	Assessment Language: English			
Description of the evaluation process	Assessment Method: Individu			
	presentation and oral examination			
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test,		ents will receive a grade (score)		
Short Answer Questions, Essay Development	indicating their overall performance during project			
Questions, Problem Solving, Written				
Assignment, Essay / Report, Oral Exam, Public				
Presentation, Laboratory Assignment, Clinical				
Examination of Patients, Artistic Interpretation, Other well defined student assessment criteria				
are mentioned. Mention whether and how the				
students can access them.				

5. DIGITIZATION (use of tools & software)

Eclass, Moodle, Zoom

6. RECOMMENDED INTERNATIONAL LITERATURE

- Advanced Oxidation Processes for Water Treatment, Edited by: Mihaela Stefan, IWA Publishing, 2017, ISBN: 9781780407180. <u>https://doi.org/10.2166/9781780407197</u>
- Advanced Oxidation Processes for Water and Wastewater Treatment, Edited by: Simon Parsons, IWA Publishing, 2004, ISBN: 9781843390176. <u>https://doi.org/10.2166/9781780403076</u>
- Advanced Oxidation Processes for Wastewater Treatment, Edited by: Suresh Ameta, Rakshit Ameta, Academic Press, 2018, ISBN: 9780128104996. <u>https://doi.org/10.1016/C2016-0-00384-4</u>
- Chemistry of Ozone in Water and Wastewater Treatment, by Clemens von Sonntag, Urs von Gunten, IWA Publishing, 2012, ISBN: 9781843393139. <u>https://doi.org/10.2166/9781780400839</u>
- Water Treatment, Principles and Design, by Crittenden, Trussell, Hand, Howe, Tchobanoglous, John Wiley & Sons, 3rd Edition, 2012, ISBN: 9780470405390. <u>https://doi.org/10.1002/9781118131473</u>
- Wastewater Engineering: Treatment and Resource Recovery, by Tchobanoglous, Stensel,

Tsuchihashi, Burton, McGraw Hill, 5th Edition, 2013, ISBN: 9780073401188.

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	Chemical ad	l Environmental	Engineering		
DEPARTMENT					
COURSE LEVEL	Postgraduate				
COURSE ID			SEMESTER	Spr	ing
COURSE TITLE	Climate Cha	nge Impact Asse	ssment		0
		inge impact Asse	.551110111		
COURSE MOD in the case of credits being awarded in eg. Lectures, Laboratory Exercises, etc uniformly for the whole course, inc teaching and the total number of cred	In distinct parts of the course etc. If credit units are awarded HOURS PER CREDITS ndicate the weekly hours of WEEK			CREDITS	
	Lecture	s and Tutorials	3		9
Add rows if needed. The teaching orgo					
methods used are described in detail					
COURSE TYPE	Special Background and Skills Development				
Background, General Knowledge,					
Scientific Area, Skills Development					
PREREQUISITES:	There are no prerequisite courses. The student is expected to have an adequate background on mathematics, physics/engineering, and basic skills on data processing (e.g. basic operations in excel). Some familiarity with programming (standard equivalent to a first-year science undergraduate programming module) and GIS would be advantageous but is not essential.				
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO ERASMUS STUDENTS:	Yes				
COURSE URL:	EURECA PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=80				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
- Learning Outcomes Writing Guide

After completing this course, the student will be able to:

Knowledge & Understanding:

- Comprehend the foundational concepts of climate science and the implications of a changing climate on both global and localized scales.
- Understanding key methodologies and principles of climate change impact assessment.
- Dissect and comprehend IPCC statements, reports, and findings.

Practical & Technical Skills:

• Source, extract, and interpret fit-for-purpose climate data for impact assessments, using a variety of tools and platforms.

• Apply hands-on techniques such as downscaling, adjustment, and processing of climate data to predict potential impacts.

Analytical & Problem-Solving Skills:

• Design and execute a CCIA project, from initial brainstorming to final presentation, integrating observational data, model outputs, and real-world applications.

Communication & Presentation Skills:

- Communicate scientific findings clearly and effectively.
- Present research projects coherently, integrating data, analyses, and implications into a structured presentation.

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below), which one(s) the course enhances?

Search, analysis and synthesis of data and information,	Project design and management				
using the necessary technologies	Respect for diversity and multiculturalism				
Adaptation to new situations	Respect for the natural environment				
Decision making	Demonstration of social, professional and moral responsibility and				
Autonomous work	sensitivity to gender issues				
Teamwork	Exercise criticism and self-criticism				
Working in an international environment	Promoting free, creative and inductive thinking				
Working in an interdisciplinary environment					
Production of new research ideas					
Search, analysis and synthesis of data and information, using the necessary technologies.					

- Promoting free, creative and inductive thinking.
- Autonomous work.
- Working in an interdisciplinary environment.
- Awareness of the importance of the natural environment.

3. COURSE SYLLABUS

The CCIA course delves deep into the multifaceted effects of climate change on natural and human systems. Recognizing the gravity of current global climate challenges, the course equips students with the necessary tools and methodologies to evaluate the potential consequences of a changing climate on various sectors, such as agriculture, water resources, health, and urban planning. It combines scientific understanding with practical implications, focusing on both qualitative and quantitative assessment techniques. Students will learn the importance of local and global scale assessments, as well as the integration of socio-economic scenarios with climate change projections. Emphasis will be given to vulnerability and adaptation strategies, recognizing that climate change impact assessment is not only about understanding consequences but also preparing for them. Through a blend of theoretical knowledge, case studies, and hands-on exercises, learners will be well-prepared to contribute constructively to the climate change discourse and action plans in academic, governmental, or private sectors.

Syllabus:

Synabus.	
1st Week:	Introduction to climate change and impact modelling.
2nd Week:	The IPCC organization and the 6 th assessment report on impacts adaptation and vulnerability. AR6 Interactive session: Find your own meaning in a Headline Statement
	1 st Assignment: delve into an IPCC Headline Statement (group assignment)
3rd Week:	Key concepts for Assessing Climate Change Impact.
	Presentation of the 1 st assignment
4th Week:	Climate Change Impacts: A Global and European Perspective
	The IPCC interactive Atlas.
	2 nd Assignment: IPCC WG1 AR6 Interactive ATLAS (individual assignment)
5th Week:	Climate Change Impacts: A local scale Perspective
	Presentation of the 2 nd assignment

6th Week:	CCIA Projects Prospectus, roundtable discussion
	3 rd Assignment: Interpreting Climate Science: A Journal Paper Presentation (group
	assignment)
7th Week:	Climate model data: Sources, formats, software and repositories. The Copernicus
	Climate Data Store. Hands-on 1: Obtaining fit-for-purpose data for impact
	assessment.
8th Week:	Hands-on 2: The Climate Data Operator (CDO), installation
9th Week:	Hands-on 3: The Climate Data Operator (CDO), basic operations
10th Week:	Hands-on 4: Processing data for impact assessments (downscaling and impact
	modelling)
11th Week:	Presentation of the 3 rd assignment
12th Week:	Detection and Attribution of Climate Change impacts
13th Week:	Project presentations and discussion

4. TEACHING and LEARNING METHODS – ASSESSMENT

LECTURE METHOD	Hybrid (Face to face and Distance learning)		
Face to face, distance learning, etc.			
USE OF INFORMATION AND	Moodle learning platform		
COMMUNICATION TECHNOLOGY	Zoom communication platform		
Use of ICT in Teaching, in Laboratory Exercises,	· · · · · · ·		
in Communication with students			
TEACHING ORGANISATION Describe in detail the way and methods of	ΑCTIVITY	Workload per semester (in Hours)	
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	30	
Exercise, Literature review & analysis, Tutoring, Practice (Placement), Clinical Exercise, Artistic	Practical classes and workshops	9	
Lab, Interactive teaching, Educational visits,	Autonomous study	58	
Project work, project, etc.	Assignments/tasks	62	
	Projects	66	
The student's study hours for each learning	Course Total		
activity and the hours of non-guided study	(25 hours' workload/ECTS	225	
according to the ECTS principles are mentioned.	credit)		
ASSESSMENT METHODS			
Description of the evaluation process	Assignments (40%)		
Assessment Language, Assessment Methods,	Final project report (40%)		
Formative or Concluding, Multiple Choice Test,	Project presentation and discu	ussion (20%)	
Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other			
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.			

5. DIGITIZATION (use of tools & software)

- Climate Data Operator (CDO)

- Data processing and analysis software

RECOMMENDED INTERNATIONAL LITERATURE 6.

- Zhongming, Z., Linong, L., Xiaona, Y., Wangqiang, Z., & Wei, L. (2021). AR6 climate change 2021: The physical science basis.
- Pörtner, H. O., Roberts, D. C., Adams, H., Adler, C., Aldunce, P., Ali, E., ... & Fischlin, A. (2022). Climate change 2022: Impacts, adaptation and vulnerability. IPCC Sixth Assessment Report.
- Feenstra, J. F., Burton, I., Smith, J. B., & Tol, R. S. (1998). Handbook on methods for climate change impact assessment and adaptation strategies.
- Parry, M., Nishioka, S., Harasawa, H., & Carter, T. (1996). Technical guidelines for assessing climate change impacts and adaptations.

Further readings of selected material as indicated in the individual lecture presentations (reports and scientific publications).

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contract number: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	Chemical an	Chemical and Environmental Engineering			
DEPARTMENT					
COURSE LEVEL	Postgraduate				
COURSE ID	SEMESTER Spring			ing	
COURSE TITLE	Advanced Studies on Energy Efficiency and Environmental Quality in the Built Environment			ronmental	
COURSE MOD	ULES	JLES			
in the case of credits being awarded in distinct parts of the			INSTRUCTIO	N	
course eg. Lectures, Laboratory Exercises, etc. If credit units are		HOURS PER		CREDITS	
	the whole course, indicate the weekly				
hours of teaching and the total number of credits.					
Lectures		3			
Laboratories					
Tutorial Exercises					
Total		3		9	
Add rows if needed. The teaching organization and teaching					
methods used are described in detail	methods used are described in detail in (4).				
COURSE TYPE					
Background, General Knowledge,					
Scientific Area, Skills Development	Specialization				
PREREQUISITES:					
INSTRUCTION/EXAM LANGUAGE:	English				
THE COURSE IS OFFERED TO	Yes				
ERASMUS STUDENTS:					
COURSE URL:	EURECA PRO LMS Moodle URL:				
	https://moodle.eurecapro.tuc.gr/course/view.php?id=85				

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

After completing this course the student will be able to:

- Analyse the key technologies that contribute to improving the energy efficiency of buildings, districts, and urban built environments.
- Calculate the energy demand and energy consumption of buildings and communities.
- Comprehend the role of built environment in sustainable development goals.
- Identify the main challenges in buildings and living spaces related projects.
- Practise in real case studies examples.
- Use available tools and technologies for the reduction of the energy demand in the built environment.

General Competencies/Skills

Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below),
which one(s) the course enhances?Search, analysis and synthesis of data and information,
using the necessary technologiesProject design and managementRespect for diversity and multiculturalismRespect for diversity and multiculturalismAdaptation to new situationsRespect for the natural environmentDecision makingDemonstration of social, professional and moral responsibility and
sensitivity to gender issuesTeamworkExercise criticism

Promoting free, creative and inductive thinking

- Research, analysis and synthesis of data and information, using the necessary technologies
- Adapting to new situations

Working in an international environment

Working in an interdisciplinary environment Production of new research ideas

- Decision-making
- Autonomous work
- Teamwork
- Production of new research ideas
- Project design and Management
- Respect for the natural environment
- Promoting free, creative, and inductive thinking
- Written communication
- Initiative
- Time Management
- Problem Solving

3. COURSE SYLLABUS

Content: The course aims to analyze, design, and evaluate the key technologies that contribute to improving the energy efficiency of buildings, districts and urban built environments. In addition, the course aims to analyze the environmental quality parameters indoors and in outdoor areas. Thermal comfort, visual comfort and indoor air quality is presented.

Course Material per Week (13 weeks):

- Week 1: Energy needs in buildings, communities, and cities. Modern challenges for the built environment
- Week 2: Indoor Environmental Quality in Buildings Part 1: Thermal Comfort
- Week 3: Indoor Environmental Quality in Buildings Part 2: Air Quality and Ventilation / Air Conditioning Systems
- Week 4: Indoor Environmental Quality in Buildings Part 3: Visual comfort and lighting
- Week 5: Smart Buildings and Integrated Energy Design Definitions and Examples
- Week 6: Buildings Certification LEED and BREEAM Standards

Week 7: Zero Energy Communities and Intelligent Energy Systems

Week 8: Energy planning in the urban environment and urban heat island phenomenon

- Week 9: Presentations of work progress
- Week 10: Smart cities and energy infrastructure Part 1: Definitions
- Week 11: Smart cities and energy infrastructure Part 2: Examples
- Week 12: Case Study Analysis
- Week 13: Presentations

LECTURE METHOD	
Face to face, distance learning, etc.	Face to face; hybrid (on-site and online)
USE OF INFORMATION AND	
COMMUNICATION TECHNOLOGY	
Use of ICT in Teaching, in Laboratory Exercises,	
in Communication with students	

TEACHING ORGANISATION Describe in detail the way and methods of	ΑCTIVITY	Workload per semester (in Hours)		
teaching. Lectures, Seminars, Laboratory Exercise, Field	Lectures	30.0		
Exercise, Literature review & analysis, Tutoring,	Tutorials			
Practice (Placement), Clinical Exercise, Artistic	Lab assignments	45.0		
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Projects	30.0		
Project work, project, etc.	Autonomous study	100.0		
	Literature review	20.0		
The student's study hours for each learning activity and the hours of non-quided study				
according to the ECTS principles are mentioned.				
5	Course Total	225.0		
	(25 hours' workload/ECTS	225.0		
	credit)			
ASSESSMENT METHODS	Project (100%)			
Description of the evaluation process				
Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other				
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.				

5. DIGITIZATION (use of tools & software)

6. RECOMMENDED INTERNATIONAL LITERATURE

- Kampelis, N., Kolokotsa, D. Smart Zero-energy buildings and communities for smart grids (2022) Smart Zero-Energy Buildings and Communitiesfor Smart Grids, pp. 1-289. ISBN: 978-1-119-90219-5Wiley-ISTE.
- Kolokotsa, D., Kampelis, N., Mavrigiannaki, A., Gentilozzi, M., Paredes, F., Montagnino, F.M., Venezia, L. Integration of energy storage in smartcommunities and smart grids (2022) Smart Zero-Energy Buildings and Communities for Smart Grids, pp. 221-262.
- 3. Kolokotsa, D., Pignatta, G., Ulpiani, G. Nearly Zero-Energy and Positive-Energy Buildings: Status and Trends (2022) Technologies for IntegratedEnergy Systems and Networks, pp. 239-273.

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contract number: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

1. COURSE INFORMATION

SCHOOL	School of Pr	School of Production Engineering and Management		
DEPARTMENT	-			
COURSE LEVEL	Postgraduate			
COURSE ID		SEMESTER Winter / Spring		
COURSE TITLE	Inventories and Supply Chains			
COURSE MODULES				
in the case of credits being awarded in	n the case of credits being awarded in distinct parts of the course		INSTRUCTIO	N
eg. Lectures, Laboratory Exercises, etc	c. If credit unit	s are awarded	HOURS PEF	CREDITS
uniformly for the whole course, inc	le course, indicate the weekly hours of		WEEK	
teaching and the total number of credits.				
Lectures		Lectures	3	
Laboratories		1		
Tutorial Exercises		1		
Total		5	5	
Add rows if needed. The teaching organization and teaching				
methods used are described in detail	in (4).			
COURSE TYPE	General Knowledge			
Background, General Knowledge,				
Scientific Area, Skills Development				
PREREQUISITES:	-			
INSTRUCTION/EXAM LANGUAGE:	English			
THE COURSE IS OFFERED TO	YES			
ERASMUS STUDENTS:				
COURSE URL:	EURECA-PRO LMS Moodle URL:			
	https://moodle.eurecapro.tuc.gr/course/view.php?id=86			

2. LEARNING OUTCOMES

Learning Outcomes

The learning outcomes of the course describe the specific knowledge, skills and competences of an appropriate level that students will acquire after successfully completing the course.

Refer to Appendix A.

- Description of the Level of Learning Outcomes for each course of study in line with the European Higher Education Area Qualifications Framework
- Descriptive Indicators of Levels 6, 7 & 8 of the European Qualifications Framework for Lifelong Learning and Annex B
 Learning Outcomes Writing Guide

After completing this course the students will be able to:

- Describe and Formulate Supply Chain Management Problems, such as product transportation, vehicle routing problem, facility location, inventory management, scheduling of operations

- Solve supply chain management problems
- Apply heuristics, metaheuristics, evolutionary and nature-inspired algorithms to solve supply chain management problems

- Program the algorithms for solving Supply Chain Management problems in Matlab, C, C++ and Python programming languages

- Analyze real-life situations of supply chain management problems
- Practice solving complex supply chain management problems
- Use software packages to solve supply chain management problems

General Competencies/Skills

General Competencies/Skills Considering the general competencies that the graduate must have acquired (as listed in the Diploma Supplement and below),						
which one(s) the course enhances?	last have dequired (as instea in the Diploma Supplement and below),					
Search, analysis and synthesis of data and information, using the necessary technologies Adaptation to new situations Decision making Autonomous work Teamwork Working in an international environment Working in an interdisciplinary environment Production of new research ideas	Project design and management Respect for diversity and multiculturalism Respect for the natural environment Demonstration of social, professional and moral responsibility and sensitivity to gender issues Exercise criticism and self-criticism Promoting free, creative and inductive thinking					
	- Search, analysis and synthesis of data and information, using the necessary technologies					
- Adaptation to new situations						
- Decision-making						
- Autonomous work						
- Teamwork						
- Production of new research ideas						
- Project design and management						
- Innovative thinking						
- Working in an international environment						
- Working in an interdisciplinary environment						
- Computer use						
- Problem solving						
- Managing numerical data						
- Respect for diversity and multiculturalism						
- Respect for the natural environment	ral responsibility and consitivity to gondor issues					
- Demonstration of social, professional and moral responsibility and sensitivity to gender issues						
- Exercise criticism and self-criticism						
- Promoting free, creative and inductive thinking	ng					

3. COURSE SYLLABUS

The role of the supply chain management. Demand and supply planning in a supply chain. Applications and mathematical formulation. The traveling salesman problem. The bin packing problem. Transportation and distribution of products in the supply chain. Distribution network design. Distribution channels. Route planning. Problems of fleet selection and vehicle size. Vehicle routing problem. Variants of the vehicle routing problem. Scheduling problems. Facility location problems. Inventory management. Inventory routing problems in logistics (Single period inventory routing problem, multi-period inventory routing problem). Integrated supply chain management systems. Maritime logistics. Green supply chain. Electric and unmanned aerial vehicles in the supply chain.

Laboratory courses: For a better understanding of the course, students are required to perform laboratory exercises in C, C++, Python or Matlab, solving real supply chain management problems. Each group of students implements a different problem with different programming tools and different solution algorithms.

LECTURE METHOD	Face to face/Distance Learning	
Face to face, distance learning, etc.		
USE OF INFORMATION AND	Use of ICT in Teaching: Notes and presentations of lectures	
COMMUNICATION TECHNOLOGY	of the course in moodle, courses by videoconference.	
Use of ICT in Teaching, in Laboratory Exercises,	Use of ICT in Laboratory Exercises: Notes and presentations	
in Communication with students	of laboratory lectures of the course in moodle and courses	
	by videoconference. Learning different programming	
	languages and their use for creating programs in the subject	
	of the course.	

European University on Responsible Consumption and Production

	Use of ICT in Communication with students: Solving			
	questions via videoconference and email			
TEACHING ORGANISATION Describe in detail the way and methods of		ΑCTIVITY	Workload per semester (in Hours)	
teaching. Lectures, Seminars, Laboratory Exercise, Field		Lectures	39	
Exercise, Literature review & analysis, Tutoring,	Tutorials 13		13	
Practice (Placement), Clinical Exercise, Artistic	Lab assignments 13		13	
Lab, Interactive teaching, Educational visits, Project work, project, etc.	Projects 20		20	
		Autonomous study	40	
The student's study hours for each learning activity and the hours of non-guided study according to the ECTS principles are mentioned.		Course Total (25 hours' workload/ECTS credit)	125	
ASSESSMENT METHODS			ultiple Choice Questions or/and	
Description of the evaluation process Assessment Language, Assessment Methods, Formative or Concluding, Multiple Choice Test, Short Answer Questions, Essay Development Questions, Problem Solving, Written Assignment, Essay / Report, Oral Exam, Public Presentation, Laboratory Assignment, Clinical Examination of Patients, Artistic Interpretation, Other	Problem Solving Questions) 50% Team Project (Problem Solving, Essay / Report, Public Presentation) 30% Individual Project (Problem Solving, Essay / Report, Public Presentation) 20%			
Well defined student assessment criteria are mentioned. Mention whether and how the students can access them.				

5. DIGITIZATION (use of tools & software)

Moodle, eclass, matlab, python, c, c++

6. RECOMMENDED INTERNATIONAL LITERATURE

- 1. Waters D., (2003) Logistics: An Introduction to Supply Chain Management, Palgrave Macmillan.
- 2. Lambert D., Stock J., Ellram L., (1998) Fundamentals of Logistics Management, McGraw-Hill.
- **3.** Ravindran, Ravi; Warsing, Donald Jr. (2017). Supply chain engineering: models and applications. CRC Press.
- 4. Robert B. Handfield; Ernest L. Nichols (1999). Introduction to Supply Chain Management. New York: Prentice-Hall.
- 5. Roberta S. Russell, Bernard W. Taylor (2021). Operations and Supply Chain Management, 10th edition, John Wiley & Sons.
- 6. F. Robert Jacobs and Richard Chase (2018). Operations and Supply Chain Management, 15th edition, McGraw-Hill
- **7.** Sunil Chopra, Peter Meindl (2014) Supply Chain Management, Strategy, Planning and Operation, 6th edition, Pearson.
- 8. Alan Harrison and Remko Van Hoek (2007) Logistics Management and Strategy. Competing through the Supply Chain 4th Edition, Prentice Hall

Acknowledgement: "Co-funded by the ERASMUS+ Programme of the European Union" (Contractnumber: 101004049 — EURECA-PRO — EAC-A02-2019 / EAC-A02-2019-1)

